Nuprl Lemma : ma-interface-consistent-consistent2 11,40

es:ES, T:Type, X:MaInterface(T).
ma-interface-consistent2(es;X ma-interface-consistent(es;X
latex


Definitionst  T, IdDeq, x:A  B(x), b, ES, Type, a:A fp B(a), e@iP(e), Atom$n, Id, if b then t else f fi , x:AB(x), P  Q, x:AB(x), P & Q, P  Q, MaInterface(T), ma-interface-locs(I), Top, type List, (x  l), {x:AB(x)} , x  dom(f), ma-interface-consistent-at(es;i;X), ma-interface-consistent(es;X), ma-interface-consistent2(es;I), s = t, Knd, State(ds), left + right, f(x), strong-subtype(A;B), xt(x), EqDecider(T), KindDeq, , , valtype(e), t.1, vartype(i;x), f(x)?z, ma-interface-dom(I;i), a < b, hasloc(k;i), x.A(x), fpf-domain(f), A c B, , x:AB(x), <ab>, True, T, Unit, tt, ff, b, IdLnk, case b of inl(x) => s(x) | inr(y) => t(y), S  T, Void, x:A.B(x), t.2, s ~ t, {T}, SQType(T), E, ma-interface-valtype(I;i;k), P  Q, let x,y = A in B(x;y), f(a), ma-interface-info(I;i;k), ma-interface-ds(I;i), x(s)
LemmasKnd wf, fpf-cap wf, squash wf, true wf, deq wf, fpf wf, id-deq wf, fpf-ap wf, pi1 wf, member-fpf-dom, subtype rel wf, Id wf, pi2 wf, fpf-domain wf, subtype rel product, subtype rel list, subtype rel function, subtype rel set, bnot wf, bfalse wf, btrue wf, subtype-set-hasloc, l member wf, fpf-trivial-subtype-top, decl-state wf, top wf, hasloc wf, l member subtype, Kind-deq wf, strong-subtype-deq-subtype, strong-subtype-set3, strong-subtype-self, assert wf, fpf-dom wf, member-fpf-domain

origin